Characterization of a putative stereoselective oxidoreductase from Gluconobacter oxydans and its application in producing ethyl (R)-4-chloro-3-hydroxybutanoate ester.

نویسندگان

  • Xu Liu
  • Rong Chen
  • Zhongwei Yang
  • Jiale Wang
  • Jinping Lin
  • Dongzhi Wei
چکیده

A gene encoding an NADH-dependent short-chain dehydrogenase/reductase (gox2036) from Gluconobacter oxydans 621H was cloned and heterogeneously expressed in Escherichia coli. The protein (Gox2036) was purified to homogeneity and biochemically characterized. Gox2036 was a homotetramer with a subunit size of approximately 28 kDa. Gox2036 had a strict requirement for NAD⁺/NADH as the cofactor. Gox2036 displayed preference for oxidation of secondary alcohols and 2,3-diols as well as for reduction of α-diketones, hydroxy ketones, α-ketoesters, and β-ketoesters. However, Gox2036 was poorly active on 1,2-diols and acetoin and showed no activity on primary alcohols, polyols, and aldehydes. The optimum pH values for the oxidation and reduction reactions were 9 and 6, respectively. Gox2036 was highly selective in the reduction of various β-ketones and β-ketoesters. Among the substrates tested, ethyl 4-chloro acetoacetate was reduced to ethyl (R)-4-chloro-3-hydroxybutanoate ester with an excellent conversion yield of 96.9 % and optical purity of >99 % e.e. using an efficient in situ NADH-recycling system involving glucose and a glucose dehydrogenase from Bacillus subtilis (BsGDH).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Purification and properties of a carbonyl reductase useful for production of ethyl (S)-4-chloro-3-hydroxybutanoate from Kluyveromyces lactis.

A novel carbonyl reductase (KLCR1) that reduced ethyl 4-chloroacetoacetate (ECAA) to synthesize ethyl (S)-4-chloro-3-hydroxybutanoate ((S)-ECHB) was purified from Kluyveromyces lactis. KLCR1 catalyzed the NADPH-dependent reduction of ECAA enantioselectively but not the oxidation of (S)-ECHB. From partial amino acid sequences, KLCR1 was suggested to be an alpha subunit of fatty acid synthase (FA...

متن کامل

Gluconobacter oxydans: its biotechnological applications.

Gluconobacter oxydans is a gram-negative bacterium belonging to the family Acetobacteraceae. G. oxydans is an obligate aerobe, having a respiratory type of metabolism using oxygen as the terminal electron acceptor. Gluconobacter strains flourish in sugary niches e.g. ripe grapes, apples, dates, garden soil, baker's soil, honeybees, fruit, cider, beer, wine. Gluconobacter strains are non-pathoge...

متن کامل

Heterologous overexpression and characterization of a flavoprotein-cytochrome c complex fructose dehydrogenase of Gluconobacter japonicus NBRC3260.

A heterotrimeric flavoprotein-cytochrome c complex fructose dehydrogenase (FDH) of Gluconobacter japonicus NBRC3260 catalyzes the oxidation of d-fructose to produce 5-keto-d-fructose and is used for diagnosis and basic research purposes as a direct electron transfer-type bioelectrocatalysis. The fdhSCL genes encoding the FDH complex of G. japonicus NBRC3260 were isolated by a PCR-based gene amp...

متن کامل

Purification and characterization of inducible cephalexin synthesizing enzyme in Gluconobacter oxydans.

Cephalexin synthesizing enzyme (CSE) of Gluconobacter oxydans ATCC 9324 was purified up to about 940-fold at a yield of 12%. CSE biosynthesis in G. oxydans was found inducible in the presence of D-phenylglycine but not its substrate phenylglycine methyl ester. The purified enzyme was shown homogeneous on SDS-PAGE and exhibited a specific activity of 440 U per mg protein. The apparent molecular ...

متن کامل

Identification of membrane-bound quinoprotein inositol dehydrogenase in Gluconobacter oxydans ATCC 621H.

The GOX1857 gene, which encodes a putative membrane-bound pyrroloquinoline quinone (PQQ)-dependent dehydrogenase in Gluconobacter oxydans ATCC 621H, was characterized. GOX1857 was disrupted and the oxidizing potential of the resulting mutant strain was compared to that of the wild-type. In contrast to the wild-type, the mutant was unable to grow with myo-inositol as the sole energy source and d...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Molecular biotechnology

دوره 56 4  شماره 

صفحات  -

تاریخ انتشار 2014